

From muons to supercomputers

Stefano Tognini Research Associate

Oak Ridge National Laboratory

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Summary

- Part 1 (past)
 - MINOS/MINOS+
 - NOvA

- Part 2 (present)
 - Computing in HEP
 - Celeritas
 - Takeaways

Part 1 Past work

Background

- Undergrad + grad school at Federal University of Goias (UFG)
 - Somehow, iNSPIRE calls it Goias University...

Background

Undergrad

• Senior thesis on neutral hyperon semileptonic decays

- Master's
 - Cosmic ray MC using CORSIKA
 - Wrote a CORSIKA binary to ROOT converter
 - Deployed CORSIKA in our small CPU cluster at UFG
 - Thesis:
 - Simulation of atmospheric temperature effects on cosmic ray muons

• Started on MINOS in 2011 (I guess I'm old...)

- Main service: Remote Operation Centers
 - Get MINOS ROC scripts up and running
 - Write documentation
 - Create certification procedures and hand-on/hand-off rules for shifters
 - Allegedly, all neutrino experiment certifications are based on MINOS

• Our ROC was the first certified MINOS ROC in the World

Certified ROC's

CERTIFIED ON	STATION	INSTITUTION'S NAME	PHONE	CURRENT RESPONSIBLE
2013-05-27	Goias	Federal University of Goias	+55 62 3521 1122 ext. 217	Stefano Tognini (stognini@fnal.gov)
2013-07-22	Warsaw	University of Warsaw	+48 22 5532817	Katarzyna Grzelak (grzelakk@fnal.gov)
2013-09-??	Duluth	Univ of Minnesota Duluth	+1 218 726 7214	Alec Habig (ahabig@umn.edu)
2013-09-25	Tufts	Tufts University	+1 617 627 4373	Tony Mann (mann@fnal.gov)
2013-11-27	UMN	Univ of Minnesota	+1 612 624 4546	Marvin Marshak (marshak@umn.edu)
2013-12-04	WM	College of William and Mary	+1 757 221 5485	Alena Devan (avgavrilenko@email.wm.edu)
2014-03-17	UCL	University College London	+44 20 7679 3425	Leigh Whitehead (I.whitehead@ucl.ac.uk)
2015-09-30	UT	University of Texas at Austin	+1 512 475 7285	Karol Lang (lang@physics.utexas.edu)
2015-10-06	Cincinnati	University of Cincinnati	+1 513 556 0480	Alex Sousa (absousa@gmail.com)
uncert	BNL	Brookhaven National Lab	+1 631 344 8954	?

• I set up the MINOS ROCW... we were the first to go live

• Around that time, I became liaison for all ROCs, including ROCW

• Highly involved on 2 analyses

PHYSICAL REVIEW D 91, 112006 (2015)

Observation of seasonal variation of atmospheric multiple-muon events in the MINOS Near and Far Detectors

PHYSICAL REVIEW D 93, 052017 (2016)

Measurement of the multiple-muon charge ratio in the MINOS Far Detector

PHYSICAL REVIEW D 93, 052017 (2016)

Measurement of the multiple-muon charge ratio in the MINOS Far Detector

• Cosmic ray primaries are mostly protons (+1), therefore

$$R \equiv \frac{N_{\mu^+}}{N_{\mu^-}} > 1$$

- Knowing **R** helps
 - Predicting the atmospheric $\nu/\overline{\nu}$ rate
 - Tuning models

11

PHYSICAL REVIEW D **91**, 112006 (2015)

Observation of seasonal variation of atmospheric multiple-muon events in the MINOS Near and Far Detectors

https://www.fnal.gov/pub/today/archive/archive_2015/today15-05-15.html

PHYSICAL REVIEW D 91, 112006 (2015)

Observation of seasonal variation of atmospheric multiple-muon events in the MINOS Near and Far Detectors

NOvA (Ph.D.)

PHYSICAL REVIEW D 99, 122004 (2019)

Observation of seasonal variation of atmospheric multiple-muon events in the NOvA Near Detector

13 **CAK RIDGE** National Laboratory

NOvA (Ph.D.)

PHYSICAL REVIEW D 99, 122004 (2019)

Observation of seasonal variation of atmospheric multiple-muon events in the NOvA Near Detector

- Lots of computing work, almost all single-handed:
 - Reconstruction algorithm written almost from scratch
 - Convert ECMWF (atmospheric temperature) GRIB data to ROOT
 - Tweak CRY MC to produce multiple-muons
 - MC validation, data production
 - Analysis files, scripts, and macros

NOvA

- Computing services:
 - More ROC work (now liaison of MINOS+ ROCs & NOvA ROC @ UFG)

- Yes, we've got a bigger room!
- 2016: MINOS+ shifts were over
- Active ROCS:
 - NOVA & LArIAT

NOvA

- Computing services:
 - Add CORSIKA to NOvASoft (later on to LArSoft)

Part 2 Current work

CAK RIDGE National Laboratory

Stefano C. TogniniResearch Associate in Computational Particle PhysicsHPC Methods for Nuclear ApplicationsNuclear Energy and Fuel Cycle DivisionFusion and Fission Energy and Science Directorate

togninis@ornl.gov www.ornl.gov 1 Bethel Valley Road P.O. Box 2008, MS 6170 Oak Ridge, TN, 37831

MANAGED BY UT-BATTELLE FOR THE US DEPARTMENT OF ENERGY

DOE Exascale Computing Project

Pre-Exascale Systems

Future Exascale Systems

The US DOE Exascale Computing Project (ECP) Perspective for the HEP Community A Coordinated Ecosystem for HL-LHC Computing R&D. Washington D.C. 2019. indico.cern.ch/event/834880/

Oak Ridge Leadership Computing Facility

CAK RIDGE

20

L_____

Nearly perfect parallel scaling efficiency on Summit

Annals of Nuclear Energy, vol. 128, pp. 236-247 (2019)

- ExaSMR: Coupled MC Neutronics and Fluid Flow Simulation of SMRs
 - Shift GPU MC radiation transport code

ExaSMR / Shift

HEP computing challenges | LHC

Opportunities

$\textbf{HEP} \cap \textbf{HPC}$

- Previous efforts
 - GeantV
 - GeantX

- Current efforts
 - AdePT [github.com/apt-sim/AdePT]
 - Opticks [EPJ 214, 02027 (2019)]

Opportunities

Impact

- Summit (ORNL)
 - 27,648 GPUs $\xrightarrow{\times 160}$ 4,423,680 CPUs
 - WLCG (2017): 500,000 CPUs*

Adding LCFs to HEP will vastly expand its current computing capacity

A GPU Monte Carlo detector simulation code for HEP

Will NOT replace Geant4, but could massively speed up HEP production runs

- Core team
 - **ORNL** Tom Evans, Seth Johnson, Stefano Tognini
 - ANL Paul Romano, Amanda Lund
 - FNAL Philippe Canal, Guilherme Lima, Soon Yung Jun
 - BNL Vincent Pascuzzi

MAK RIDGE

National Laboratory

• CPU vs. GPU programming

• CPU vs. GPU programming

• CPU vs. GPU programming

CAK RIDGE

https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

C

• CPU vs. GPU programming

- Host and device memory are independent
- Host can read, but NOT edit data on device
- Host/device I/O is slow and non-trivial
- Device dynamic memory allocation is non-trivial
- Poor runtime polymorphism support
- Many libraries do not have a device-equivalent counterpart (e.g. std::string)

C

• CPU vs. GPU programming

- Host and device memory are independent
- Host can read, but NOT edit data on device
- Host/device I/O is slow and non-trivial
- Device dynamic memory allocation is non-trivial
- Poor runtime polymorphism support
- Many libraries do not have a device-equivalent counterpart (e.g. std::string)

Geant4 is fundamentally built on these

Started almost from scratch

- A LOT of development to do
 - Geometry import & navigation; physics models; XS data; EM fields; I/O
 - CPU and GPU compatible
 - Reproducible
 - Multiplatform (AMD, NVIDIA, Intel)
 - Scalable

Celeritas | Physics

Implemented

Planned

Particle	Process	Model(s)	-	Physics	Process	Particle(s)
γ	$\gamma \qquad \begin{array}{c} \mbox{photon conversion} & \mbox{Bethe-Heitler} \\ \mbox{Compton scattering} & \mbox{Klein-Nishina} \\ \mbox{photoelectric effect} & \mbox{Livermore} \\ \mbox{Rayleigh scattering} & \mbox{Livermore} \end{array}$				photon conversion pair annihilation photoelectric effect ionization	$egin{array}{c} \gamma \\ e^{\pm} \\ \gamma \\ \mathrm{charged \ leptons, \ hadrons, \ and \ ions} \end{array}$
e^{\pm} μ^{\pm}	ionization bremsstrahlung pair annihilation multiple scattering muon bremsstrahlung	Møller–Bhabha Seltzer–Berger, relativistic EPlusGG Urban, WentzelVI Muon Bremsstrahlung	-	EM	bremsstrahlung Rayleigh scattering Compton scattering Coulomb scattering multiple scattering continuous energy loss	charged leptons and hadrons γ γ charged leptons, hadrons charged leptons, hadrons charged leptons, hadrons, and ions
			-	Decay	two body decay three body decay n-body decay	$\mu^{\pm}, \tau^{\pm}, \text{hadrons}$ $\mu^{\pm}, \tau^{\pm}, \text{hadrons}$ $\mu^{\pm}, \tau^{\pm}, \text{hadrons}$
Complete validations are still ongoing			Hadronic	photon-nucleus lepton-nucleus nucleon-nucleon	$egin{array}{c} \gamma \ ext{leptons} \ p, \ n \end{array}$	
		manome		hadron-nucleon hadron-nucleus nucleus-nucleus	hadrons hadrons hadrons	

Celeritas | Preliminary results

 Spherical Cylindrical cow in a vacuum version of CMS

- Single-element concentric cylinders of Si, Pb, C, Ti, and Fe
- Uses all implemented physics for e^{\pm} and γ

Isotropic source 100k photon primaries 1 GeV each Vertex at the origin

Celeritas | Preliminary results

Application	Execution	Speedup
Geant4 (v10.7)	CPU (serial)	1
Celeritas	CPU (serial)	1.4
Celeritas	CPU (OpenMP)	40
Celeritas	GPU	280

Geant4 scales linearly

- 30 cores \approx 30× serial execution
- Single NVIDIA V100 ≈ 280 cores

CPU	Intel Xeon Gold 5218 @ 2.3 GHz
	(Cascade Lake)
GPU	<u>NVIDIA V100 @ 1.53 GHz</u>
	(80 symmetric multiproc. 64 cores each
	16 GB of memory)

Celeritas | Integration paths and challenges

• Acceleritas library provides a streamline integration with relatively small changes

• Cons:

- Considerably smaller performance impact
- Many (most?) offline HEP working nodes do not have dedicated GPU hardware

Celeritas | Integration paths and challenges

- End-to-end is envisioned after decay + hadronic physics are available
- Integration between LCFs and HEP-EX is a gray area still
 - I/O bottlenecks; ROOT integration; what is processed where
 - LCFs are mostly GPU (Summit is >95%); is local CPU post-processing worth it?
 - Network transfers can become another bottleneck; ...

Lessons learned

• HPC vs. HEP-Ex workflows are drastically different

• Mindset change: physics results vs. code performance & quality

- Lots of learning: CMake, C++, CUDA, HIP, GIT, CI, QA unit-tests...
 - Lots of new jargons

• Networking goes both ways (you're an outsider; end up meeting new people)

Backup

HEP computing challenges

- Detector triggering and reconstruction
- Event generators
- Detector simulation our focus
- Frameworks
- Data analysis
- Software dev. tools and packaging

- HEP Software Foundation [hepsoftwarefoundation.org]
- Snowmass [snowmass21.org]

HEP computing challenges | DUNE

- Signal processing
 - Noise filtering
 - Triggering and data processing/compression (raw events: 6 GB 115 PB)
- MC
 - EM showers are a big bottleneck in LArTPCs
- **Reconstruction** [FERMILAB-CONF-20-074-SCD]
 - Hit based (e.g. Pandora); Image based (CNNs); hybrid
 - Well suited for AI/ML and GPUs

HEP computing challenges | LHC

CMS

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

• Reconstruction takes 65% of CPU time

• Sim takes 14% — or 42% of what's left after reconstruction

Celeritas | Partnerships

Celeritas | Dependencies

45

https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

Celeritas | Geometry navigation

- VecGeom
- ORANGE (Oak Ridge Adaptable Nested Geometry Engine)

Celeritas | Preliminary results

CAK RIDGE