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Getting into the topic of today's talk...




Why we should have more nuclear reactors?




B Climate change

Temperature (°C)
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Jan 1

1979
1986
1993
2000
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2014
2021

Feb 1

1980
1987
1994
2001
2008
2015
— 2022

Mar 1

2m Temperature World (90°S-90°N, 0-360°E)

NCEP CFSV2/CFSR | ClimateReanalyzer.org, Climate Change Institute, University of Maine

Apr 1

1981
1988
1995
2002
2009
2016
- 2023

May 1

Jun1 Jul 1

1982
1989
1996
2003
2010
2017
-= 1979-2000 mean

Aug 1

1983
1990
1997
2004
2011
2018
- - plus 20

Sep 1 Oct 1

1984
1991
1998
2005
2012
2019

-« minus 20

Nov 1

1985
1992
1999
2006
2013
2020

Dec 1

Mon Jun 26, 2023

Obs Temp: 16.81 °C
Clim Mean: 16.13 °C
Anomaly: +0.68 °C

Fri Jun 9, 2023

Obs Temp: 16.77 °C
Clim Mean: 15.86 °C
Anomaly: +0.90 °C

Thu Jul 6, 2023

Obs Temp: 17.23 °C
Clim Mean: 16.22 °C
Anomaly: +1.02 °C

https://www.climatereanalyzer.org/clim/t2 daily/



https://www.climatereanalyzer.org/clim/t2_daily/

B Nuclear Power

Carbon equivalente emissions of electricity supply technologies
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https://www.ipcc.ch/site/assets/uploads/2018/02/

18 ipcc_wg3_ar5_annex-iii.pdf#page=7



However...




B Nuclear Power - Barriers and risks

20

Barriers to and risks associated with an increasing use of nuclear
energy include operational risks and the associated safety con-
cerns, uranium mining risks, financial and regulatory risks, unre-
solved waste management issues, nuclear weapon proliferation
concerns, and adverse public opinion (robust evidence, high agree-
ment). New fuel cycles and reactor technologies addressing some of
these issues are under development and progress has been made con-
cerning safety and waste disposal (medium evidence, medium agree-

ment). [7.5.4,7.8.2,7.9, 7.11]

https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc wg3 arS chapter?.pdf



https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter7.pdf

B Nuclear Power - Barriers and risks

21

Barriers to and risks associated with an increasing use of nuclear
energy incleo erational risks and the associated safety con-
cerns, uranium mining risks, financial regulatory risks, unre-
solved waste management issues, nuclear weapon roliferationc
concerns, and adverse public opinion (robust evidence, high agree-
ment). New fuel cycles and reactor technologies addressing some of
these issues are under development and progress has been made con-
cerning safety and waste disposal (medium evidence, medium agree-

ment).[7.5.4,7.8.2,7.9, 7.11] We’ve been exploring using

antineutrino detectors to be

applied to these points

https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc wg3 ar5 chapter?7.pdf



https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter7.pdf

Lets revisit some key concepts regarding nuclear weapons




B Nuclear Explosion

- Neutron-induced fission chain
reactions

I st neutron 2nd neutron 3rd neutron

generation generation generation
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B Nuclear Explosion

- Neutron-induced fission chain
reactions

- Essential ingredients: 235U or

239Pu

- Nearby neutron likely to cause
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fission and release >1 neutron as a
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B Nuclear Explosion

- Neutron-induced fission chain

reactions .
- Essential ingredients: 235 or 7Py . @ 7
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B Nuclear Explosion

- Neutron-induced fission chain
reactions

- Essential ingredients: 235U or 2°Pu

- Nearby neutron likely to cause
fission and release >1 neutron as a
product

- These isotopes aren’t found In
enriched form in nature

- We (humans) make them
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B Nuclear Explosion

- Neutron-induced fission chain

reactions .
- Essential ingredients: 233U or #’Pu - @ S >
; *

- Nearby neutron likely to cause oo i \@ g& > 7
fission and release >1 neutron as a S .
product 8% ;{9

'Y J
- These isotopes aren’t found in Cowy @O -
enriched form in nature 608 ol cagp @ 7 ?
g 'i}'u
U “ .

- We (humans) make them @

2

- We can also control the production s N S

I st neutron 2nd neutron 3rd neutron
generation generation generation
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B Nuclear Control

- To control the production of nuclear weapons -> control/catalog 235 and **°Pu
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B Nuclear Control

- To control the production of nuclear weapons -> control/catalog 235 and **°Pu

- ALL reactors make 239Pu

— o U
3 .
239
I,,,=23.5min %U /j‘—"
3 -~
- 239 €
7[ y - 2.3561(1_\'5' 93 Np /30 -

\
Z
T,,=244x10%yrs o Pu

29



B Nuclear Control

- To control the production of nuclear weapons -> control/catalog 235 and

_ ALL reactors make +°Pu
- We need to monitor and control nuclear reactors n 218
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B Nuclear Control

- To control the production of nuclear weapons -> control/catalog 235 and

239Pu

- ALL reactors make

- We need to monitor and control nuclear reactors n 28
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Reactor Antineutrino Production

Table of the Isotopes _' stable
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B Reactor Antineutrino Production

235

Table of the Isotopes stable

- Reactor v,: made in beta-decay of ~9py,

. . 1014 yr
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We can use neutrinos to monitor:

1 - Reactor Power
2 - Rate-Based *>°Pu

3 - Energy-Based 2Py




BB Reactor Power Monitoring

- Fissions make both neutrinos AND energy



BB Reactor Power Monitoring

- Fissions make both neutrinos AND energy

- More power made = more neutrinos released
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BB Reactor Power Monitoring

- Fissions make both neutrinos AND energy
- More power made = more neutrinos released

- An antineutrino-based ex-situ reactor power monitor
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BB Reactor Power Monitoring

- Fissions make both neutrinos AND energy
- More power made = more neutrinos released
- An antineutrino-based ex-situ reactor power monitor

- Achieved already in numerous reactor experiments up to > km distances

Daya Bay, Chin. Phys. C 41(1) (2017)
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BB Reactor Power Monitoring

- Fissions make both neutrinos AND energy

- More power made = more neutrinos released

- An antineutrino-based ex-situ reactor power monitor

- Achieved already in numerous reactor experiments up to > km distances

- Monitor operational status, even from very far away (50+ km)
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BB Reactor Power Monitoring

- Fissions make both neutrinos AND energy

- More power made = more neutrinos released

- An antineutrino-based ex-situ reactor power monitor

- Achieved already in numerous reactor experiments up to > km distances

- Monitor operational status, even from very far away (50+ km)

Barriers to and risks associated with an increasing use of nuclear
energy mcleo erational risks and the associated safety con-
cerns, uranium mining risks, financial and requlatory risks, unre-
solved waste management issues, nuclear weapon proliferation
concerns, and adverse public opinion (robust evidence, high agree-
ment). New fuel cycles and reactor technologies addressing some of
these issues are under development and progress has been made con-
cerning safety and waste disposal (medium evidence, medium agree-
ment).[7.5.4,7.8.2,7.9, 7.11]
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BB Reactor Power Monitoring

- Current reactors have plenty of monitoring

41

mechanisms and don’t need antineutrino-
based devices

Barriers to and risks associated with an increasing use of nuclear
energy incloo erational risks and the associated safety con-
cerns, uranium mining risks, financial and regulatory risks, unre-
solved waste management issues, nuclear weapon proliferation
concerns, and adverse public opinion (robust evidence, high agree-
ment). New fuel cycles and reactor technologies addressing some of
these issues are under development and progress has been made con-
cerning safety and waste disposal (medium evidence, medium agree-

ment). [7.5.4,7.8.2,7.9, 7.11]




BB Reactor Power Monitoring

- Current reactors have plenty of monitoring
mechanisms and don’t need antineutrino-

based devices

- There are advanced reactors and new
technol OJQ les that can benefit Barriers to and risks associated with an increasing use of nuclear

energy incleo erational risks and the associated safety con-
cerns, uranium mining risks, financial and requlatory risks, unre-

- Sma” MOdUIar ReaCtOrS -> NOt meant tO be solved waste management issues, nuclear weapon proliferation

opened ever concerns, and adverse public opinion (robust evidence, high agree-
ment). New fuel cycles and reactor technologies addressing some of

these issues are under development and progress has been made con-
cerning safety and waste disposal (medium evidence, medium agree-
ment).[7.5.4,7.8.2,7.9,7.11]

o https://www.energy.gov/ne/advanced-small-modular-reactors-smrs



Rate-Based “°’Pu Monitoring

- 239Pu makes fewer neutrinos than

43

235U

Hulber-Mueller

lsotope

Modlel

—

W

Y

Q 235

'3, 6.7 241Py
X 6.0

2 A

0 .
-

y

S 239Py
L{‘ 4.4
A\

o




Rate-Based “°’Pu Monitoring

- 239Pu makes fewer neutrinos than 235 U

- Change in detected antineutrino/day is a o

direct measure of amount of %°°Pu bred
into fuel
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Rate-Based “°’Pu Monitoring

- 239Pu makes fewer neutrinos than 235 U

Barriers to and risks associated with an increasing use of nuclear

energy include operational risks and the associated safety con-

- Change IN detected antineutrino/day IS 9 cerns, uranium mining risks, financial and regulatory risks, unre-

: 230 solved waste management isso nuclear weapon proliferation
direct measure of amount of Pu bred concerns, and adverse public opinion (robust evidence, high agree-
into fuel ment). New fuel cycles and reactor technologies addressing some of

these issues are under development and progress has been made con-
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T cerning safety and waste disposal (medium evidence, medium agree-
ment).[7.5.4,7.8.2,7.9, 7.11]

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.107.092010



Energy-Based “*’Pu Monitoring

- We know 239Pu makes lower

46

energy neutrinos than

235U
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- We know 239Pu makes lower

- Detected antineutrino energy is

47

energy neutrinos than 235

a direct measure of kg of 23%p
bred into fuel
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Energy-Based “*’Pu Monitoring

e Simulation for a 40MW heavy water reactor

- We know 2°’Pu makes lower
energy neutrinos than 235

- Detected antineutrino prompt
energy Is a direct measure of kg

of 2>°Pu bred into fuel

- Daya Bay has observed this
change in spectrum

48
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B 239py Monitoring

- Case studies:

49

1.

Monitoring of plutonium production
and investigation of a possible
diversion from declared inventories at
a lranian reactor at Arak

https://arxiv.org/pdf/1403.7065.pdf

How antineutrino detectors could have
been used for safeguards in the
context of the North Korean nuclear

crisis in 1994

https://arxiv.org/pdf/1312.1959.pdf

Barriers to and risks associated with an increasing use of nuclear
energy include operational risks and the associated safety con-
cerns, uranium mining risks, financial and regulatory risks, unre-
solved waste management isso nuclear weapon proliferation
concerns, and adverse public opinion (robust evidence, high agree-
ment). New fuel cycles and reactor technologies addressing some of
these issues are under development and progress has been made con-
cerning safety and waste disposal (medium evidence, medium agree-

ment). [7.5.4,7.8.2,7.9, 7.11]




B Final remarks and Conclusion

- Need alternative energy sources ASAP

- Nuclear power presents as a valuable alternative

- Need precautions to use it safely and ethically Check this report for detailed info on
practical applications:
- Antineutrino monitoring can help keep track of: https://nutools.ornl.gov/wp-content/

uploads/securepdfs/2022/01/

- Status (on/o
( il Nu_Tools_Report_Final_20211220.pdf

- Power
- Fuel content
- Advantages of:
- Detectors located outside of the reactor building or even the facility -> Minimally invasive.
- There are no known ways to shield, suppress, or fake a neutrino signal

- Unattended and remote operation

50



B Mobile Antineutrino Demonstrator

- Advantages of:

- Detectors located outside of the reactor building or even the facility -> Minimally invasive.

- Unattended and remote operation

51



B Mobile Antineutrino Demonstrator

- NNSA sponsored project - Two designs being explored:

- ~ 1Ton-scale segmented scintillator detector

- Moveable platform

- Standard shipping container

52



Questions?







. IBD Detection in °Li-doped Detector

-— Y
prompt 4 ’_’ E=1-10 MeV
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E ~ 0.55 MeV
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